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Abstract 

A new numerical program for the calculation of 
neutron scattering intensities in a complex cell made 
of n concentric cylinders has been developed with 
the purpose of analysing the diffraction data of fluid 
metals under high-temperature and high-pressure 
conditions. A simulation of the experiment on liquid 
Cs at T = 1 6 7 3 K  and P = 8 6 x 1 0  SPa contained in 
such a cell has been performed in order to test the 
accuracy of standard data-analysis procedures 
employed to derive the static structure factor. 

I. Introduction 

In the last few years there has been a great deal of 
interest in the study of fluids at high pressures and /o r  
elevated temperatures. Structural, thermodynamic 
and electronic properties of fluid metals up to their 
liquid-gas critical point have been investigated both 
experimentally (Hensel, Juengst, Noll & Winter, 
1985; Freyland & Hensel, 1985) and theoretically 
(March, 1989, and references therein). Special experi- 
mental high-temperature high-pressure techniques 
have been developed in order to deal with the problem 
of containing highly corrosive metals in uncontami- 
nated form in these extreme thermodynamic condi- 
tions. In particular, a quite complex cell has been 
designed for neutron diffraction studies in these sys- 
tems (Freyland, Hensel & Glaser, 1979) and success- 
fully employed for measurements of the static struc- 
ture factor in liquid Cs (To= 1924K, Pc=92 .5x  
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10 SPa) and Rb (Tc=2090K,  P c = 1 4 0 x 1 0  SPa) 
(Franz, Freyland, Glaser, Hensel & Schneider, 1980; 
Freyland, Hensel & Glaser, 1984; Winter & 
Bodensteiner, 1988; Winter, Hensel, Bodensteiner & 
Glaser, 1987). The manufacture of such a cell opens 
the possibility of studying the microscopic properties 
of many fluids in critical conditions, even though the 
neutron scattering investigation turns out to be com- 
plex. As described in Freyland, Hensel & Glaser 
(1979), such a cell can be schematically depicted as 
a set of n concentric cylinders of different materials 
representing the sample container, the heater ele- 
ments, the heat shields and the pressure vessel. High 
pressures at the sample can be established by using 
a relatively thin-walled sample container and, at the 
same time, compensating the internal sample pressure 
by surrounding the container with Ar gas under pres- 
sure (Freyland, Hensel & Glaser, 1979). Therefore, 
the compensating gas can be thought of as playing 
the role of an additional cylinder constituting the 
complex cell. The use of such a cell in a neutron 
diffraction measurement entails a high background 
contribution from the sample containment to the total 
scattered intensity. Therefore, accurate data treatment 
is necessary in order to derive the correct static struc- 
ture factor S(Q) from the measured intensities. 

In a previous paper (Petrillo & Sacchetti, 1990), a 
data-reduction procedure applicable to neutron 
diffraction measurements in low-scattering-power 
fluids contained in high-scattering cells has been 
presented. The main purpose of that paper was to 
optimize the subtraction of contributions coming 
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from the cell, accounting also for absorption and 
higher-order scattering processes involving the cell. 
The approach discussed in Petrillo & Sacchetti (1990) 
can be generalized to the case of n-cylinder geometry 
(Freyland, Hensel & Glaser, 1979) where the con- 
tainer subtraction appears to be a much more critical t~ Xp 
and complex point. A similar problem was discussed t~-~ p 
ten years ago by Soper & Egelstaff (1980). The present t~xp 
numerical approach, however, is completely different 
from that proposed by Soper & Egelstaff (1980) and t~ 
the relative advantages will be discussed in the next t, 
section, ts, 

In the present paper we describe a new numerical t~, 
program for the calculation of neutron scattering t o, 
intensities and hence of the proper parameters occur- 
ring in the data-reduction procedure as applied to i~,,~ 
the general case of this cell geometry. Although the t°,~j 
basic ideas of the previous numerical simulation 
remain the same, calculations are carried out using t,~, 
a rather different and optimized computational I,, 
approach. In order to emphasize the importance of i~ o~ 
accounting for all the scattering processes from this 
system when analysing the diffraction data, a full T, 
simulation of a neutron diffraction experiment on 
liquid Cs at T = 1673 K and P = 86 x 105 Pa (Winter 
& Bodensteiner, 1988) has been performed. By apply- 
ing to the intensities simulated with the aid of the 
present program some standard data treatment based 
on Paalman & Pings (1962) and Blech & Averbach 
(1965) approaches, the effects introduced by an in- 
correct data analysis on the static structure factor are 
quantitatively discussed. 

2. Data treatment and computational procedure 

Typically, a neutron diffraction experiment to deter- 
mine S(Q) consists in performing five measurements: 
cell filled with the sample, empty cell, a full absorber, 
environment by removing sample and cell, and a 
vanadium standard. In this way, as discussed in 

Fig. 1. Schemat ic  transverse section o f  the h igh- tempera ture  high- 
pressure cell descr ibed by Freyland,  Hensel  & Glaser  (1979). 
Heavy full line: sample conta iner  (Mo,  t h i ckness=0 .3  mm);  
dashed  lines: heaters (W, thickness = 0.05 mm);  full lines: heat 
shields (Mo,  t h i c k n e s s = 0 . 0 2 5 m m ) .  The black area is the 
pressure vessel (a luminium alloy AIMgSi, thickness = 5 mm),  the 
dot ted  areas are filled by Ar compensa t ing  gas. 

Table 1. Experimental and calculated neutron scatter- 
ing intensities and calculated attenuation and trans- 

mission coefficients 

experimental intensity from the sample inside the complex 
cell 
experimental intensity from the empty complex cell 
experimental intensity from a Cd bar inside the complex cell 
and having the same diameter as the sample container 
experimental intensity from the empty cell without the sample 
container 
background intensity of the sample-plus-cell measurement 
background intensity of the empty-cell measurement 
single-scattering intensity from the sample 
double-scattering intensity from the sample 
single-scattering intensity from the ith cylinder constituting 
the cell filled with the sample 
single-scattering intensity from the ith cylinder constituting 
the cell without the sample 
double-scattering intensity between the ith and the jth 
cylinders of the cell filled with the sample 
double-scattering intensity between the ith and the jth 
cylinders of the cell without the sample 
double-scattering intensity between the sample and the ith 
cylinder of the cell 
double-scattering intensity between the ith cylinder of the cell 
and the sample 
single-scattering intensity from the sample corrected for the 
proper attenuation 
sample attenuation coefficient accounting for the ettects due 
to the sample and the whole cell 

Petrillo & Sacchetti (1990), it is possible to correct 
the data for the contributions from both the environ- 
ment and the cell, for multiple scattering and for 
attenuation effects by making the maximum possible 
use of measured intensities and therefore reducing 
the effect of unavoidable inaccuracies due to sample 
and cell size and cross sections. A careful evaluation 
of the few unavoidable calculated parameters occur- 
ring in such a data treatment is however necessary. 
In the following, the basic equations of the data 
analysis developed by Petrillo & Sacchetti (1990) are 
briefly reported in a version generalized to treat the 
case of a sample contained in a high-pressure high- 
temperature cell like that schematically shown in Fig. 
1 (Freyland, Hensel & Glaser, 1979). The notation 
employed throughout the present section is reported 
in Table 1. For the sake of simplicity, (1), (2) and 
(3) are developed to treat double-scattering processes 
even though higher-order terms can be calculated by 
the present version of the numerical program. 

The measured total scattering intensities from the 
sample and from the empty container can be written 
a s  

exp s s 
,+c= t~+ I,s+Z tc,+Z/~,cj 

i 0 

$ + c ,  
i i 

leXp Y.I ° , + Z  o B 
c = l c i c j +  I~ . 

i i j  

( l a )  

( lb)  

Such intensities contain the appropriate attenuation 
as suffered by neutrons in crossing both the sample 
and the n cylinders constituting the complex cell (see 
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Fig. 1). Empty cell and multiple-scattering contribu- 
tions can be subtracted by defining respectively the 
calculated parameters y and m, whose generalizations 
are 

i /j 
y = (2a) 

E I°, + E l°,cj 
i 6 

m = [(1.~.~ + ~  l,~i+~ilci.~)/l~ml.~ ] . (2b) 

The single-scattering intensity from the sample, 
corrected for all the attenuation effects, is given by 

lcorr =/~/T~ 

{t~xp o l~Xp = - ~ ÷ ~ -  l s + ~ -  y (  -l~)-m/(m+l) 
X L ~ s + c -  (3) 

In (2b) and (3) the notation Q ~ o e  means that mul- 
tiple-scattering subtraction, as well as normalization 
to the standard, should be performed in that high-Q 
region where the trend of I~ can be reasonably mod- 
elled including the Q dependence due to inelasticity 
effects (for example, the sample cross section is 
smooth enough and no structural information is 
present). 

Some observations deserve the definitions of back- 
ground transmissions, entering the background inten- 
sities a 8 l~÷c and I~, and of sample attenuation T~. With 
an optical arrangement in which only some of the 
cylinders are 'seen' by the neutron detector, the back- 
ground transmission is given by 

R m a x  

T B= ~ d y e x p [ - X ( y ) ] D ( y ) ,  (4a) 
-- R m a  x 

where X(y) is the path integral of the total linear 
attenuation coefficient along a straight line parallel 
to the incoming neutron-beam direction, y is a coor- 
dinate along a direction perpendicular to that of the 
beam, Rma x is the radius of the outermost cylinder 
(i.e. the pressure vessel) and D(y) is a function nor- 
malized to unity accounting for the detector optics. 
For example, with a rectangular shape assumed for 
D(y), i.e. D(y)= 1/2Ri if y <  R,, D(y)=0 if y >  R,, 
only the background neutrons crossing the cylindrical 
volumes with radii smaller than Ri will be collected 
by the detector. Therefore, the integration in (4a) is 
performed over an appropriate cylinder diameter 
accounting for the optics of the detector, while the 
path integral X(y )  is performed over the outermost 
cylinder diameter since all the cylinders contribute 
anyway to attenuate the background neutrons collec- 
ted by the detector. 

The attenuation suffered by the neutron beam dur- 
ing single-scattering processes at different scattering 
angles is still defined by equation (11) of Petrillo & 
Sacchetti (1990) when the system is fully bathed by 

the beam. When such a condition is not verified, 
the effect of the finite size of the incoming beam 
has to be taken into account and the attenuation is 
modified as 

T=~drJo(r) exp[-(X~+XF)]/SdrJo(r) (4b) 

where Xg and XF are the path integrals of the total 
linear attenuation coefficient along the path lengths 
of the incoming and scattered neutron beams and 
Jo(r) is a function describing the transverse shape of 
the incoming neutron beam. 

The effect of a finite beam size has to be taken into 
account also when defining the intensities associated 
with single- (11) and multiple- (I", n >  1) scattering 
processes entering the calculation of the parameters 
y and m [(2a) and (2b)]. In particular, one has 

t~= No(d~/dO)o J dr Jo(r) 
v~ 

× exp[-(Xl + XF)] /  ~v dr Jo(r), (5a) 

I~1 ..... = ~ drlJo(rl)N~(dcr/dg2),~l/ ~ dr Jo(r) 
vo~ / v,,i 

x ,=2(I [ N~,(do/d~)~,, 

x ]" driexp - X I - X F -  Xk L~ 
Vai k = l  / l j = l  

(5b) 

where the index a refers to the sample or the general 
cylinder and V,, is the corresponding volume, N,, is 
the number density and (do-/dO)~ the differential 
cross section. Xk is the integral along the path lk 
between kth and (k + 1)th scattering events. Finally, 
we note that the detector optics, described by the 
function D(y), can be easily inserted into (4b), (5a) 
and (5b). 

The application of the present data treatment ( 1 a) -  
(4b) to the neutron scattering intensities collected 
using such a high-pressure high-temperature cell 
needs however some additional comments. A first 
question regards the 'full-absorber' measurement 
which is required in order to evaluate the background 
intensities a l~+c and I~ (Petrillo & Sacchetti, 1990). 
In principle, such a measurement is intended to 
account for all the scattering processes originating 
from the environment when the neutron paths do not 
cross the volume otherwise occupied by the system 
sample plus cell. Therefore the dimensions of the 
absorber are dictated by height and external diameter 
of the cell. Adopting this prescription in the case of 
the cell shown in Fig. 1 would require a measurement 
on an absorber bar having the same diameter as the 
outer pressure vessel. In this condition, the formulas 
defining B B l.~+c and lc developed by Petrillo & Sacchetti 
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(1990) remain valid. In contrast, deviations from this 
'dimension prescription' for the full absorber would 
imply some obvious modifications of the basic 
equations. 

A second problem is related to the 'empty-cell '  
measurement. As already discussed, the Ar gas 
necessary to compensate the high pressure at the 
sample has to be considered as an additional cylin- 
drical volume constituting the complex cell. Indeed, 
when measuring the sample, the contributions to the 
intensity coming from the compensating gas could be 
not negligible and in principle should be subtracted 
as part of the 'empty-cell '  contribution. Of course, 
removing the sample entails removing the Ar gas 
unless substituting the sample with a virtually zero- 
scattering gas having the only function of keeping 
the whole system under Ar pressure during the 
'empty-cell '  measurement. 

3. C o m p u t a t i o n a l  p r o c e d u r e  

The calculation of the scattering intensities defined 
by the integrals (5a) and (Sb) has been carried out 
using the same approach as described by Petrillo & 
Sacchetti (1990), namely a Monte Carlo (MC) 
integration procedure in which a random sampling 
of the integration volume is performed. Given a 
couple of scattering points randomly sampled inside 
the total volume, one must univocally associate a 
value of the total linear attenuation coefficient with 
each point and then calculate the path lengths associ- 
ated with both single- and multiple-scattering pro- 
cesses involving the given couple of points. Path 
lengths are evaluated using a subroutine which makes 
the search for the interception points between the 
straight lines of the neutron path and all the relevant 
cylindrical surfaces. The geometrical problem of 
finding the interception points is simplified by using 
a parametrized form for the straight line, i.e. 

X = X 1 + t ( x  2 -- Xl)  

y = y l + t ( y 2 - - Y l )  with 0-< t-< 1. 

z = zl + t(z2 - zl) 

The condition 0-< t _< 1 automatically guarantees that 
the interception points are contained inside the total 
volume. The subroutine thus yields the values of the 
parameters t, ordered from the lowest to the highest 
value, for every couple of points (x~,y~, z~) and 
(x2, Y2, z2). With known paths and related total linear 
attenuation coefficients, as well as the appropriate 
cross section of the material depending on the scatter- 
ing angle, the integrals (5a) and (5b) are easily 
evaluated. 

A detailed discussion about the errors on y and m 
introduced by inaccuracies of the MC integration 
procedure has been presented by Petrillo & Sacchetti 
(1990) for the two-cylinder geometry. The generaliz- 

Table 2. Calculated y, m and T~ parameters as a 
funct ion  o f  the number o f  iterations in a hypothetical 

four-cyl inder system with a varying volume 

R: radius of  the cylinder;/ . t t°t:  total  l inear  a t tenua t ion  coefficient. 
Ca lcu la t ions  have been p e r f o r m e d  at fixed scat ter ing angle 20 = 50 ° 
and  for  a h o m o g e n e o u s  incoming  beam ba th ing  the whole  system. 
No ' sma l l -pa th '  correct ion has been  appl ied  in the calcula t ion (see 
text). 

N u m b e r  o f  i terat ions 

R ( c m )  /zt°t (cm-1)  3x105  6 x 1 0  s 9x105  

0.50 0.5 
0.55 0.3 3, 0.932 0.931 0.93 I 

m 0.308 0.329 0.316 2.50 0.005 
2.55 0.4 T~ 0.598 0.600 0.600 

0.50 0.5 
0.65 0.3 y 0.946 0.944 0.945 

m 0.479 0.498 0.485 2.50 0.005 
2.55 0.4 Ts 0.457 0.459 0.459 

ation to n cylinders does not alter substantially this 
discussion. The only difference in the present case is 
that, as the number of sampling points inside each 
cylinder is proportional to its volume, an adequate 
sampling in each volume generally requires the use 
of a high total number of random points. Of course, 
the choice of such a number depends on the number 
of cylinders constituting the cell and on the values 
of their volumes. As an example, we report in Table 
2 the values of the parameters 3' [(2a)],  m [(2b)] and 
Ts [(4c)] calculated in the case of a hypothetical 
four-cylinder geometry as a function of both the total 
number of sampling points and the cylinder volumes. 
In order to study the statistical stability of y and m 
values versus the number of sampling points as related 
to the cylinder volumes, the calculations have been 
performed at a fixed scattering angle and assuming 
a homogeneous incoming beam bathing the whole 
system. 

Finally, we note that possible inaccuracies in the 
calculation of multiple-scattering intensities [(5b)] 
can originate from small paths Ik between kth and 
( k +  1)th scattering points randomly generated. The 
diverging behaviour of the integrand function in (5b) 
can introduce a numerical instability (of the order of 
0.01 or less) in the calculated value of the parameter 
m as a function of the number of sampling points. 
On the contrary, this problem is completely over- 
whelmed in the case of the 3' parameter which is 
calculated as a ratio of homogeneous quantities, that 
is the effect of 'small paths'  is equally contributing 
to both the numerator and the denominator  and there- 
fore largely cancels. In order to reduce this numerical 
effect, we introduced a correction described in the 
Appendix. A check of the goodness of such a correc- 
tion has been done by running the program, modified 
to account for this effect, in the case of the two 
hypothetical systems of Table 2. Quite satisfactory 
results for m are found; in particular, when the num- 
ber of sampling points is increased from 3 x 105 to 
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6x 105 and to 9× 105 , the value of m changes from 
0.312 to 0.319 and to 0.317 for the first system and 
from 0.489 to 0.487 and to 0.487 for the second system. 
The use of this 'small-paths' corrective function is, 
however, not recommended in the case of extremely 
reduced thicknesses of both sample and containers, 
where this concept is no longer meaningful. 

Finally, we mention the advantages that the present 
computational method has over the more conven- 
tional one used by Soper & Egelstaff (1980). Firstly, 
in the present approach the computing effort is pro- 
portional to the scattering order while in the conven- 
tional procedure it follows a power law. Moreover, 
the present approach allows for the use of a rather 
large number of sampling points within the integra- 
tion volume so that good accuracy can be obtained 
in the correction of the diverging behaviour of the 
integrand in (5b). The advantage of having a large 
number of sampling points is very well exploited in 
the case of complex cells when rather thin metallic 
cylinders giving a non-negligible contribution are 
present. 

4. Results and discussion 

The present program, whose principal application is 
the calculation of parameters y, m and T~ when 
analysing the experimental data, has been used to 
simulate a neutron scattering experiment on a hard- 
sphere liquid contained in the complex cell shown in 
Fig. 1. In particular, the simulation has been per- 
formed with reference to liquid Cs at T = 1673 K and 
P = 86 x 105 Pa whose experimental data are reported 
by Winter & Bodensteiner (1988). In order to simulate 
the experimental intensities 1exP t ~p o B -~+~, -,. , l~+c and I~ 
[ ( la )  and (lb)],  the intensities of single- [(5a)] and 
double- [(5b)] scattering processes taking place 
within the whole system of sample plus complex cell 
were calculated using the values of linear attenuation 
coefficients reported in Table 3. All the components 
of the cell apart from the sample were treated as 
isotropic scatterers. The differential cross section of 
liquid Cs appearing in (5a) and (5b) was obtained, 
neglecting the incoherent scattering, by dcr/dg2 = 
Nb2S(Q)  where N = 0.0044 atoms A-3 is the number 
density at T = 1673 K and P = 86 x 105 Pa (Winter & 
Bodensteiner, 1988) and b = 5.42 fm is the coherent 
scattering length. The static structure factor S(Q) was 
calculated using the Percus-Yievick approximation 
(Ziman, 1982) assuming a hard-sphere radius of 4.8/~ 
and no inelasticity effect was taken into account. The 
values of the cross sections employed in the calcula- 
tion of the linear attenuation coefficients were taken 
from McLane, Dunford & Rose (1988). The density 
of the Ar compensating gas was calculated according 
to the perfect-gas law using a value of pressure equal 
to 86 x 105 Pa and temperature values changing from 
1673 K at the centre of the cell down to room tem- 

Table 3. Radii and linear attenuation coefficients 
related to scattering (i ~ '"~') and absorption (la, "b~ ) cross 
sections for the different components of  the cell shown 

in Fig. 1 

A b s o r p t i o n  c r o s s  s e c t i o n s  r e f e r  to  a n  i n c o m i n g  n e u t r o n  w a v e l e n g t h  

,~ =o.7 A. 
R ( c m )  t z . . . .  ( c m  t) ~ b ,  ( c m  l) 

Cs 0.750 0.0172 0.0492 
Mo 0.780 0.39 0.033 
Ar 0.950 0.0003 0.0001 
W 0.955 0.358 0.45 
Ar 1.170 0.0003 0.0001 
W 1.175 0.358 0.45 
Ar 1.720 0.0005 0.0002 
Mo 1.723 0.39 0.033 
Ar 2.265 0.0011 0.0004 
Mo 2.268 0.39 0.033 
Ar 3.438 0.012 0.0005 
Mo 3.440 0.39 0.033 
Ar 4.350 0.0146 0.0006 
AIMgSi 4.85 0.091 0.0054 

perature at the pressure vessel. Quite reasonably, it 
can be assumed that the temperature remains almost 
constant over the distance from the centre of the cell 
to the first heat shield, reduces by about a factor of 
two in passing from the first to the second heat shield 
and decreases smoothly to room temperature at the 
pressure-vessel radius. All the calculations were per- 
formed at an incoming neutron wavelength of 0.7 
and an incident-beam height of 5 cm. The incoming 
beam profile was simulated by a Gaussian beam shape 
having a full width at half-maximum (FWHM) of 
1 cm. Some information about the contributions to 
the scattered intensity coming from the different com- 
ponents of the cell can be inferred by the data reported 
in Table 4 where the ratio of single scattering from 
sample container, heaters, heat shields, compensating 
gas and pressure vessel to single scattering from the 
sample are reported as a function of the scattering 
angle. 

In Fig. 2 the simulated 'experimental' intensities 
l e x p  from the sample contained in the complex cell (.,..,,,, 

from the empty cell (l~Xp), from the cell after remov- 
ing sample and sample container (lexp) and from a 
cadmium bar having the same diameter as the sample 
container (/-exp~ -cd J are shown as functions of the scatter- 
ing angle. The choice of simulating such intensities, 
and not for example that of a cadmium bar with the 
same diameter as the outer one of the pressure vessel, 
was dictated by the attempt to reproduce as closely 
as possible the experiment presented by Winter & 
Bodensteiner (1988). Following this paper, we define 

l.~+c and I~ as the background intensities B 
B = l e x p  4- , 4  ( l[exp l e x p ~  ls+c ~ C d  - - ' - s ,  s c , , - a  - -  ~ C d  1, 

I ~ = I ~ P J - A  ~I ~xp 1~xp~ 
• ~ ( ' d  w " - c ,  c x - - a  - -  J C d  I ,  

where the terms Aij are the cylindrical absorption 
factors described in Paalman & Pings (1962). The 
corrected single-scattering intensity from the sample, 
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Table 4. Ratios of  single-scattering intensities from the 
sample container ( lz), the two heaters (I3),  the three 
heat shields (I4), all the Ar compensating gas ( ls), the 
pressure vessel (I6) and the single-scattering intensity 
from the sample ( I~) at three values of the scattering 

angle 2 0 

2 0 (o) 12/I I 13/I~ 14/II 15/Ii 16/11 
0 1.3 0.39 0.30 0.37 4.4 

50 1.3 0.39 0.31 0.39 4.6 
100 1.3 0.40 0.31 0.39 4.3 

I~ °r~, was then obtained by applying to the s imulated 
intensities the Paalman & Pings (1962) and Blech & 
Averbach (1965) corrections. One has 

exp l,c°rr=[,.~+,--r exp I,. A ....... / A c : ] / A  ....... , 

exp leXpA,.,.sc/ - A / ( A  + 1)[I~+,.- A~.,]/A ...... (6) 

where A=6(~r'~"~/~'°'), 6 defined in Blech & 
Averbach (1965), a~c~=3.95×10-ZSmZ and o :°~= 
15.26× 10 -28 m z being the scattering and total (scat- 
tering plus absorption) cross sections. The absorpt ion 
factors A~j are calculated only on sample  and sample- 
container  volumes, that is ignoring the at tenuation 
effects due to heaters, heat shields,  Ar gas and pres- 
sure vessel. Moreover, the mult iple  scattering is 
assumed to take place only within the sample,  that 
is neglecting all the mult iple  processes taking place 
among the sample and the n cylinders constituting 
the cell. In Table 5 the A 0 factors and the ~ parameter  
employed  in the calculat ion are reported. As dis- 
cussed by Petrillo & Sacchetti (1990), for a two- 
cyl inder  geometry, the A ..... and the A~,s. parameters  
are respectively equal to the sample  and the cell 

o.  o6-  

0 . 0 4 -  

.,~ 0 . 0 2 -  / 
I 

/," 

/' 

0 . 0 0  i i 

0 5 0  1 0 0  1 5 0  

2 ~  ( d e g s  ) 

Fig. 2. Simulated 'experimental' intensities (arbitrary units) versus 
scattering angle 20. Full line: sample inside the complex cell 
(leXps+cj, ~" dashed line: empty cell ,_c(lexpi ",, short-dashed line: empty 
cell after removing sample and sample container ( ~xp la ); dotted 
line: cadmium bar having the same diameter as the sample 
container put inside the cell (I~P). 

Table 5. Paalman & Pings (1962) coefficients Ai/ as a 
function of the scattering angle 2 0 calculated for liquid 
Cs at T =  1673 K and P = 86 × 105 Pa contained in the 

Mo sample container 

6 is the double-scattering parameter defined by Blech & Averbach 
(1965). 

20  (°) A ...... A,.., A : ,  A , : , /A , . . ,  

0 0.891 0.947 0.891 0.941 
20 0.891 0.947 0.891 0.941 
40 0.891 0.947 0.892 0.942 
60 0.891 0.947 0.892 0.942 
80 0.891 0.947 0.893 0.943 

100 0.891 0.947 0.893 0.943 
120 0.891 0.947 0.894 0.944 
140 0.892 0.947 0.894 0.944 

0.053 

at tenuation factors calculated by (4b). The A,.,. 
parameter  is, on the other hand,  obtained from (4b) 
evaluated for the specific case of the empty cell. 

The corrected single-scattering intensity obtained 
from (6) is shown in Fig. 3 in compar ison with the 
ideal single-scattering intensity for l iquid Cs. As we 
see, an average difference of about 15% is found 
between the two corrected intensities which has to be 
attr ibuted to the data-reduct ion procedure.  On the 
other hand,  a more realistic est imation of the mult iple 
scattering accounting for processes also involving the 
cell would increase such a contr ibut ion with the con- 
sequence of further lowering the reconstructed 
intensity. The observed difference is due to both an 
incorrect cell subtraction and sample  at tenuation cor- 
rection as obtained by applying the Paalman & Pings 
(1962) method. In particular,  the difference between 
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Fig .  3. S i n g l e - s c a t t e r i n g  i n t e n s i t i e s  f r o m  l i q u i d  Cs  a t  T = 1673 K 

and P = 86 x 105 Pa (arbitrary units) versus scattering angle 20. 
Full line: ideal intensity; dashed line: reconstructed intensity 
after Paaiman & Pings (1962) and Blech & Averbach (1965) 
corrections to the simulated 'experimental' intensities; dots: 
reconstructed intensity normalized to the ideal one. The insert 
shows the same functions over a wider scattering-angle range. 
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Table 6. y, m and Ts parameters calculated for the 
present simulated "experiment" as a function of the 

scattering angle 

20 (°) y m Ts 

0 0.925 0.069 0.780 
l0 0.941 0.069 0.780 
20 0.953 0.069 0.780 
40 0.955 0.069 0.780 
60 0.956 0.069 0.780 
80 0.958 0.069 0.781 

100 0.961 0.069 0.781 
150 0.958 0.069 0.781 

the Paalman & Pings (1962) coefficient A ..... which 
neglects the attenuation effects due to the outer cylin- 
ders, and the present sample attenuation Ts is almost 
totally responsible for the observed discrepancy. For 
the sake of comparison, we report in Table 6 the 
values of y, m and Ts calculated for the present 
'experiment' as a function of the scattering angle. The 
difference between these values and the Paalman & 
Pings (1962) calculation gives a quantitative indica- 
tion of the attenuation effect introduced by all the 
other cylinders, that is heaters, heat shields, com- 
pensating gas and pressure vessel. 

Finally, in Fig. 3, the reconstructed intensity nor- 
malized by the ideal intensity at high angles (130- 
150°), where no structure is visible (see the insert of 
Fig. 3), is also shown. Even though such a normaliz- 
ation removes the 15% discrepancy, residual differen- 
ces in the region before the first peak and around the 
first minimum are still present. In particular, the dis- 
crepancy at low angles (20 <- 10 °) has to be related 
to the cell subtraction which in the Paalman & Pings 
(1962) approach is done by multiplying the cell con- 
tribution by the ratio A ..... /Ac.c. Such a ratio plays 
the role of the 3' parameter [see (3)]. At low angles 
the sample obscures those scattering contributions 
coming from the outer cylinders much more than at 
higher angles. This effect is accounted for by the 
angular dependence of the y parameter (see Table 
6) whereas the ratio Ac.sc/Ac.c is constant at low 
angles. Therefore, the cell subtraction is overesti- 
mated by the Paalman & Pings (1962) approach 
exactly in the low-angle region which is of importance 
when studying the structure of the fluid under high 
pressure (Winter & Bodensteiner, 1988). 

The data reduction and the numerical procedure 
described here have already been applied to the analy- 
sis of neutron diffraction data from liquid C12 at 412 K 
where a quartz sample container enclosed in a 
vanadium pressure vessel with 4He compensating gas 
was employed (Bellissent-Funel, Buontempo, Petrillo 
& Ricci, 1991). 

We thank one of the referees for his very accurate 
reading of the paper and for his helpful comments 
and suggestions. 

APPENDIX 

In order to cope with the problem of the divergences 
in the integrand of (5b), one can observe that the 
typical integral which has to be performed can be 
written as 

I =  ~ dr ~ dr' exp [ - F ( r ,  r ' ) ] / l r - r ' l  2. (A1) 
v v 

With the introduction of the variable x=  r - r ' ,  (A1) 
becomes 

l = J d r  ~ d x e x p [ - F ( r , r - x ) ] / x  2, (A2) 
V Vxl,I 

where Vx(,) is the transformed volume for the x vari- 
able. The integral on Vxl,) can be split according to 

Vx(r) ~" Vl + V2 ( A 3 )  

with 

VI : volume such that x-> Xo, 

V2: volume such that x-< Xo, 

and Xo is small enough to guarantee with an 
appropriate accuracy: 

exp [ - F ( r ,  r - x ) ]  = exp [ - F ( r ,  r)] 

when x is contained in V2. Therefore, one gets 

I =  J dr J d x e x p [ - F ( r , r - x ) ] / x  2 
v v! 

+ ~ d r e x p [ - F ( r , r ) ]  S dx 1/x 2. (A4) 
v v2 

The volume V2 can be small enough to be approxi- 
mated by a sphere of radius Ro = [3 V2/(4~r)] !/3, so 
that one gets 

I =  S dr ~ d x e x p [ - F ( r , r - x ) ] / x 2 + 4 7 r R o l l ,  (A5) 
v v 1 

where I~ is an integral which must be performed in 
order to calculate the single-scattering contribution, 
so that no further computing time is required to 
evaluate (A5). On the other hand, no diverging 
behaviour is present in the first term of (A5). 
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Abstract 

Through the reformulation of crystallography that 
treats periodic and quasiperiodic structures on an 
equal footing in three-dimensional Fourier space, a 
novel computation is given of the Bravais classes for 
the simplest kinds of incommensurately modulated 
crystals: (3+3) Bravais classes in the cubic system 
and (3+ 1) Bravais classes in any of the other six 
crystal systems. The contents of a Bravais class are 
taken to be sets of ordinary three-dimensional wave 
vectors inferred from a diffraction pattern. Because 
no finer distinctions are made based on the intensities 
of the associated Bragg peaks, a significantly simpler 
set of Bravais classes is found than Janner, Janssen 
& de Wolff [Acta Cryst. (1983). A39, 658-666] find 
by defining their Bravais classes in higher- 
dimensional superspace. In our scheme, the Janner, 
Janssen & de Wolff categories appear as different 
ways to describe identical sets of three-dimensional 
wave vectors when those sets contain crystallographic 
(3+0) sublattices belonging to more than a single 
crystallographic Bravais class. While such further dis- 
criminations are important to make when the diffrac- 
tion pattern is well described by a strong lattice of 
main reflections and weaker satellite peaks, by not 
making them at the fundamental level of the Bravais 
class, the crystallographic description of all quasi- 
periodic materials is placed on a single unified 
foundation. 

I. Introduction 

Two approaches have been proposed for extending 
to quasiperiodic structures the conventional crystallo- 
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graphic description of periodic materials. The older 
superspace approach* retains the fundamental role 
of periodicity. By regarding quasiperiodic structures 
as three-dimensional sections of structures periodic 
in a higher (3 + d)-dimensional space, it extracts their 
classification scheme by examining the ordinary 
crystallographic categories of periodic structures 
in ( 3 + d )  dimensions. The second approach,t  
developed more recently in response to the discovery 
of icosahedral and decagonal quasicrystals, abandons 
the traditional reliance on periodicity and reformu- 
lates ordinary crystallography in three dimensions in 
a way that embraces quasiperiodic materials from the 
start. 

In the three-dimensional approach which 
dethrones periodicity, a unified crystallography of 
periodic and quasiperiodic materials emerges as a 
symmetry-based classification scheme for diffraction 
patterns consisting of sharp Bragg peaks.$ When 
those diffraction patterns can be indexed by three 
integers, the general scheme reduces to the ordinary 
crystallographic space-group classification of peri- 
odic structures; but the same three-dimensional 
scheme works just as well for the diffraction patterns 

* Our results here bear most directly on the formulations given 
in de Wolff, Janssen & Janner (1981) and Janner, Janssen & de 
Wolff (1983). For a recent review see Janner (1991). 

t For recent reviews see Rabson, Mermin, Rokhsar & Wright 
(1991) and Mermin (1992). 

The advantages of working in Fourier space even in the peri- 
odic case were first emphasized by Bienenstock & Ewald (1962), 
but it is only in the last dozen years, with the great interest in 
incommensurately modulated crystals and quasicrystals, that the 
need has become acute for such a radical reformulation of the 
foundations of crystallography. 
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